Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression.

نویسندگان

  • V A Luyckx
  • B Leclercq
  • L K Dowland
  • A S Yu
چکیده

Dent's disease is an X-linked inherited disorder characterized by hypercalciuria, nephrocalcinosis, nephrolithiasis, low molecular weight proteinuria, Fanconi's syndrome, and renal failure. It is caused by inactivating mutations in CLC5, a member of the CLC voltage-gated chloride channel family. CLC5 is known to be expressed in the endosomal compartment of the renal proximal tubule, where it may be required for endosomal acidification and trafficking. Although the Fanconi's syndrome and low molecular weight proteinuria in Dent's disease can be explained by disruption of endosomal function in this nephron segment, the pathogenesis of the hypercalciuria in this disease is unknown. We have generated transgenic mice (RZ) with reduced CLC5 expression by introduction of an antisense ribozyme targeted against CLC5. RZ mice are markedly hypercalciuric compared with nontransgenic control mice, at a time when their serum electrolytes and renal function are otherwise normal. This suggests that hypercalciuria in Dent's disease is a direct consequence of CLC5 hypofunction and is not attributable to a gain of function by mutant CLC5, an effect of modifier genes, or a secondary result of nonspecific renal injury. Surprisingly, hypercalciuria in RZ mice is abolished by dietary calcium deprivation, suggesting that the hypercalciuria may be attributable to gastrointestinal hyperabsorption of calcium rather than a renal calcium leak.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrarenal and subcellular localization of rat CLC5.

Dent's disease, an inherited disorder characterized by hypercalciuria, nephrolithiasis, nephrocalcinosis, rickets, low-molecular-weight proteinuria, Fanconi's syndrome, and renal failure, is caused by mutations in the renal chloride channel, CLC5. The normal role of CLC5 is unknown. We have investigated the intrarenal and subcellular localization of CLC5 in rat kidney by in situ hybridization a...

متن کامل

Cadmium Impairs Albumin Reabsorption by Down-regulating Megalin and ClC5 Channels in Renal Proximal Tubule Cells

BACKGROUND Cadmium (Cd) is a potent nephrotoxicant that impairs the reabsorptive and secretory functions of the renal proximal tubule, leading to albuminuria. OBJECTIVES To gain insights into the mechanisms of Cd-induced albuminuria, we investigated effects of Cd on the expression of megalin and chloride channel 5 (ClC5), two key players in albumin-receptor-mediated endocytosis. METHODS We ...

متن کامل

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of r...

متن کامل

Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic hypertension.

The sodium chloride cotransporter (NCC) is the primary target of thiazides diuretics, drugs used commonly for long-term hypertension therapy. Thiazides also completely reverse the signs of familial hyperkalemic hypertension (FHHt), suggesting that the primary defect in FHHt is increased NCC activity. To test whether increased NCC abundance alone is sufficient to generate the FHHt phenotype, we ...

متن کامل

Pathogenesis of primary hypercalciuria

Hypercalciuria may be classified into absorptive, renal and resorptive forms, depending on whether the primary defect is intestinal hyperabsorption of calcium, renal leak of calcium, or excessive bone resorption. In absorptive hypercalciuria, the pathogenetic role of vitamin D is uncertain, and mutations in the chloride channel may occur mainly in association with Dent’s disease. Early studies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 21  شماره 

صفحات  -

تاریخ انتشار 1999